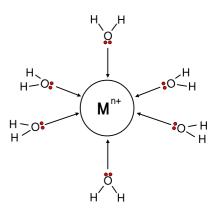
The aqueous chemistry of cations

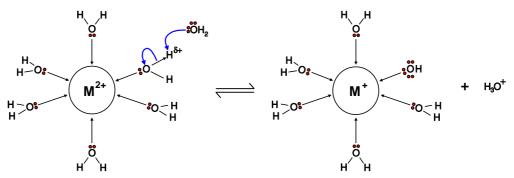
Hydrolysis • when salts dissolve in water the ions are stabilised by polar water molecules

- hydrolysis can occur and the resulting solution can become acidic
- the acidity of the resulting solution depends on the cation present
- the greater the charge density of the cation, the more acidic the solution


cation	charge	ionic radius	reaction with water and trend in pH of chloride
Na	1+	0.095 nm	
Mg	2+	0.065 nm	
AI	3+	0.050 nm	

the greater charge density of the cation, the greater the polarising power and the more acidic the solution

Q.1 Predict what will happen when $SiCl_4$ is added to water.


Theory

- aqueous metal ions attract water molecules
 - many have six water molecules surrounding
 - these are known as hexaaqua ions
 - they are octahedral in shape
 - water acts as a Lewis Base lone pair donor
 - water forms a co-ordinate bond to the metal ion
 - metal ions accept the lone pair Lewis Acids

Acidity

- as charge density increases, the cation exhibits a greater attraction for water
 - the attraction extends to the shared pair of electrons in the O-H bonds of water
 - the electron pair is pulled towards the O, making the bond more polar
 - this makes the H more acidic (more $\delta +)$
 - it can then be removed by solvent water molecules to form $H_3O^+_{(aq)}$.

Equations M^{2+} $[M(H_2O)_6]^{2+}(aq) + H_2O(I) \implies [M(H_2O)_5(OH)]^{+}(aq) + H_3O^{+}(aq)$ $M^{3+} [M(H_2O)_6]^{3+}(aq) + H_2O(I) \implies [M(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)$

- the resulting solution is acidic as there are more protons in the water
- the greater the charge density of the cation, the more the equilibrium lies to RHS
- the reaction is known as hydrolysis the water causes the substance to split up

Stronger bases (e.g. $CO_3^{2^-}$, NH_3 and OH^-) can remove further protons ...

- Lewis bases can attack the water molecules co-ordinated to metal ions.
- protons can be removed from each water molecule turning the water from a neutral molecule to a negatively charged hydroxide ion.
- this will affect the overall charge on the complex ion.

ADD BASE - EQUILIBRIUM MOVES TO THE RIGHT ADD ACID - EQUILIBRIUM MOVES TO THE LEFT

 $[\mathsf{M}(\mathsf{H}_2\mathsf{O})_6]^{2+}(\mathsf{aq}) \iff [\mathsf{M}(\mathsf{OH})(\mathsf{H}_2\mathsf{O})_5]^{+}(\mathsf{aq}) \iff [\mathsf{M}(\mathsf{OH})_2(\mathsf{H}_2\mathsf{O})_4](\mathsf{s}) \iff \mathsf{M}(\mathsf{OH})_2(\mathsf{H}_2\mathsf{O})_4](\mathsf{s}) \iff \mathsf{M}(\mathsf{OH})_4$ (\mathsf{s}) \iff \mathsf{M}(\mathsf{OH})_4(\mathsf{s}) (\mathsf{s}) (\mathsf{s})

 $[M(OH)_3(H_2O)_3]^-_{(aq)}(aq) \iff [M(OH)_4(H_2O)_2]^{2-}(aq) \iff M(OH)_5(H_2O)]^{3-}(aq)$

──── [M(OH)₆]^{4−}(aq)

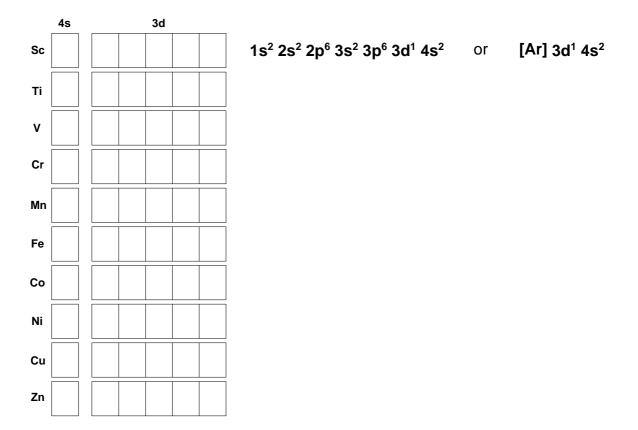
When sufficient protons have been removed the complex becomes **neutral** and precipitation of a hydroxide or carbonate occurs.

e.g. M^{2+} ions $[M(H_2O)_4(OH)_2](s)$ or $M(OH)_2$ M^{3+} ions $[M(H_2O)_3(OH)_3](s)$ or $M(OH)_3$

In some cases, if the base is strong, further protons are removed and the precipitate dissolves as soluble anionic complexes are formed.

e.g. [M(OH)₆]³⁻(aq) an octahedral, hexahydroxo ion

Summary	Very weak bases	H ₂ O	remove few protons
	Weak bases	NH ₃ , CO ₃ ²⁻	remove protons until precipitation
	Strong bases	OH⁻	can remove all the protons


The First Row Transition Elements - an introduction

Definition D-block elements forming one or more stable ions with partially filled (incomplete) d-sub shells. The first row runs from Sc to Zn filling the 3d orbitals.

Q.2 Why, in terms of energy levels, are the 4s orbitals filled before the 3d orbitals ?

Electronic

configs. The filling proceeds according to the usual rules except that chromium and copper change slightly to achieve a more stable configuration.

The characteristic properties arise from an incomplete d sub-shell in atoms or ions

Metallic propertie

- properties all the transition elements are metals
 - strong metallic bonds result from small size and close packing of the atoms
 - higher melting and boiling points and higher densities than s-block metals

	κ	Ca	Sc	Ті	V	Cr	Mn	Fe	Со	etc.
m. pt∕°C	63	850	1400	1677	1917	1903	1244	1539	1495	
density / g cm ⁻³	0.86	1.55	3	4.5	6.1	7.2	7.4	7.9	8.9	

Variable oxidation state

- arises from the similar energies required for removal of 4s and 3d electrons.
- maximum oxidation state rises across the group to manganese
- then falls as the energy required to remove more electrons becomes very high
- \bullet all (except scandium) have an M^{2+} ion
- stability of the +2 state increases across the row marked increase in 3rd I.E.

Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn
				+7					
			+6	+6	+6				
		+5	+5	+5	+5				
	+4	+4	+4	+4	+4	+4			
+3	+3	+3	+3	+3	+3	+3	+3	+3	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
								+1	

N.B. When electrons are removed they come from the 4s orbitals first

- e.g. $Cu = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ $Cu^+ = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ $Cu^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$
- Ti $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$ Ti²⁺ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$ Ti³⁺ $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$ Ti⁴⁺ $1s^2 2s^2 2p^6 3s^2 3p^6$

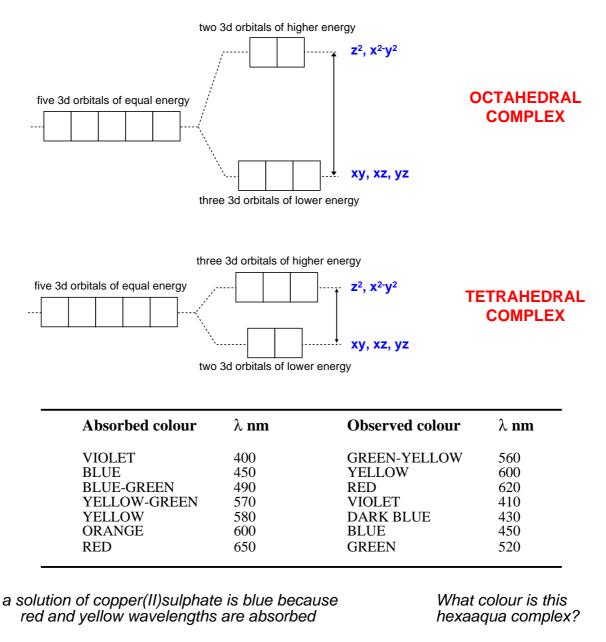
Coloured ions

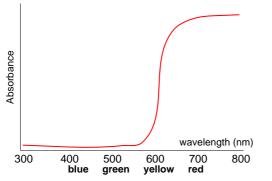
- ions with a d¹⁰ (full) or d⁰ (empty) configuration are colourless
 - ions with partially filled d-orbitals tend to be coloured
 - caused by the ease of transition of electrons between energy levels
 - energy is absorbed when an electron is promoted to a higher level
 - the frequency of light is proportional to the energy difference
 - colour depends on ... transition element oxidation state ligand coordination number

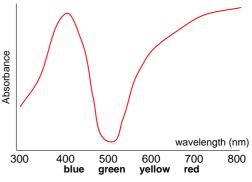
Q.3 Find out the colours of the following ions in aqueous solution

Sc^{3+}	V^{2+}	Fe^{2+}
Fe^{3+}	Co^{2+}	Zn^{2+}
Cr^{3+}	Mn^{2+}	Cu^{2+}

Splitting of

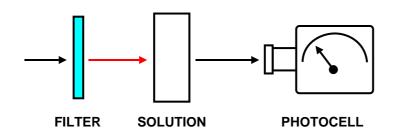

d orbitals Placing ligands around a central metal ion changes the energies of the d orbitals. Some of the d orbitals gain energy and some lose energy


The amount of splitting depends on the •


central ion ligand

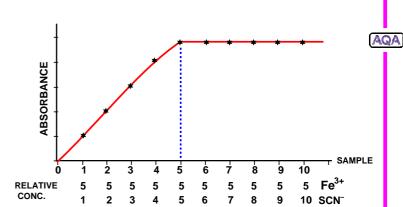
The difference in energy between the new levels affects how much energy will be absorbed when an electron is promoted to a higher level.

The amount of energy will govern the colour of light which will be absorbed.



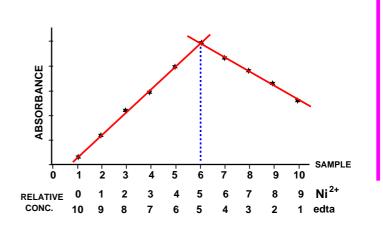
AQA

FINDING COMPLEX ION FORMULAE USING COLORIMETRY


Colorimetry • a change of ligand can change the colour of a complex

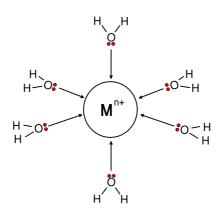
- this property can be used to find the formula of a complex ion
- light of a certain wavelength is passed through a solution
- the greater the colour intensity, the greater the absorbance
- the concentration of each species in the complex is altered
- the mixture which gives the greatest absorbance identifies ligands / ion ratio

- **Examples** finding the formula of the iron(III) complex Fe[(H₂O)₅SCN]²⁺ the complex formed between nickel(II) and edta
- Fe(III) White light is passed through a blue filter. The resulting red light is passed through various mixtures of an aqueous solution of iron(III) and potassium thiocyanate solution.


The maximum absorbance occurs first when the ratio of Fe^{3+} and SCN^{-} is 1:1.

This shows the complex has the formula [Fe(H₂O)₅SCN]²⁺

Ni(II) Filtered light is passed through various mixtures of an aqueous solution of nickel(II) sulphate and edta solution.


The **maximum absorbance** occurs when the ratio of Ni²⁺ and edta is 1:1.

IONS

Formed when species called **ligands** form **co-ordinate bonds** to a central species such as a transition metal ion.

The six H₂O molecules are acting as **ligands**

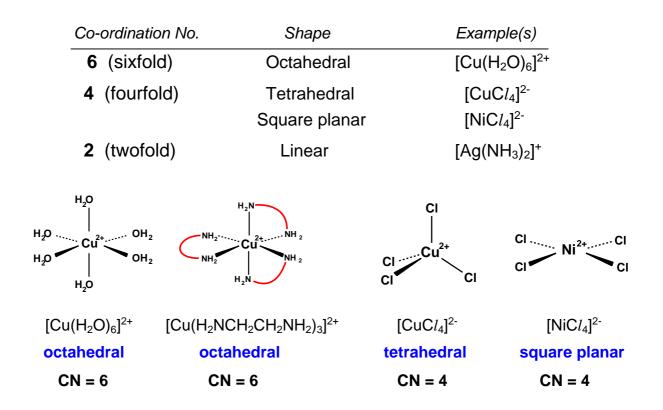
7

Ligands • atoms, or ions, which possess lone pairs of electrons

- form co-ordinate bonds to the central ion
- donate a lone pair of electrons into vacant orbitals on the central species

Ligand	Formula	Name of ligand
chloride	CГ	chloro
cyanide	NC⁻	cyano
hydroxide	HO⁻	hydroxo
oxide	O ²⁻	ОХО
water	H ₂ O	aqua
ammonia	NH_3	ammine

- some ligands attach themselves using two or more lone pairs
- classified by the number of lone pairs they use, not the number they have
- multidentate and bidentate ligands lead to more stable complexes


Unidentate	form one co-ordinate bond	$H_2O\ ,\ NH_3\ ,\ C\varGamma\ and\ OH^-$
Bidentate	form two co-ordinate bonds	$H_2NCH_2CH_2NH_2$, $C_2O_4^{2-}$
Multidentate	form several co-ordinate bonds	EDTA, Haem

Q.4 Draw structures for some bidentate and multidentate ligands

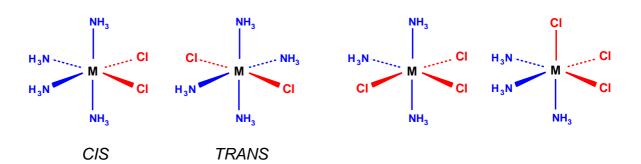
- SHAPES the shape is governed by the number of ligands around the central ion
 - shapes are based on electron pair repulsion theory
 - a change of ligand can affect the shape

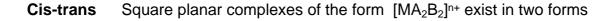
COORDINATION NUMBER

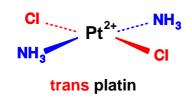
- the number of co-ordinate bonds formed to the central ion
- if monodentate ligands are present it will equal the number of ligands
- a change of ligand can affect the co-ordination number

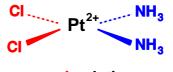
What is the co-ordination number and shape of the following complex ions?

Coordination No.

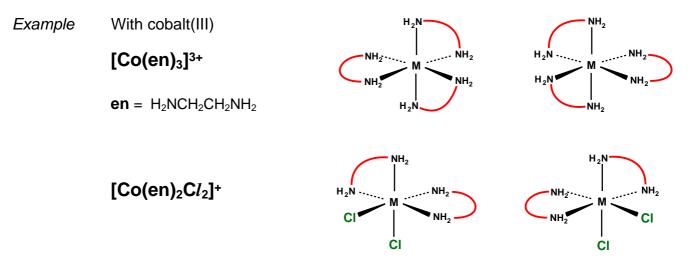

Shape


 $[Cr(H_2O)_6]^{3+}$ $[CuCl_4]^{2-}$ $[Co(H_2O)_6]^{2+}$ $[Cu(NH_3)_2]^{+}$ $[Al(OH)_6]^{3-}$


 $[Cu(NH_3)_4(H_2O)_2]^{2+}$


ISOMERISM IN COMPLEXES

Octahedral Some complexes; e.g $[MA_4B_2]^{n+}$ or $[MA_3B_3]^{n+}$ can exist in more than one form.



cis platin (ANTI CANCER DRUG)

Q.6 Why is the cis isomer more effective than the trans?

Optical Octahedral complexes with bidentate ligands can exists as a pair of enantiomers (optical isomers). H₂NCH₂CH₂NH₂

CATALYSIS • transition metals and their compounds show great catalytic activity...

- partly filled d-orbitals can be used to form bonds with adsorbed reactants
- activity is due to their ability to exist in more than one oxidation state

Example 1 Oxidation of SO₂ in the Contact Process is catalysed by vanadium(V) oxide

 step 1
 $V_2O_5(s)$ +
 $SO_2(g)$ >
 $V_2O_4(s)$ +
 $SO_3(g)$

 step 2
 $V_2O4_4(s)$ +
 $\frac{1}{2}O_2(g)$ --->
 $V_2O_5(s)$

 overall
 $SO_2(g)$ +
 $\frac{1}{2}O_2(g)$ --->
 $SO_3(g)$

Example 2 Reaction between I^- and $S_2O_8^{2-}$ (peroxodisulfate ion)

- a slow reaction because reactants are both negative ions ... REPULSION
- addition of iron(II) catalyses the reaction

step 1 $S_2O_8^{2-}(aq) + Fe^{2+}(aq) \longrightarrow 2SO_4^{2-}(aq) + Fe^{3+}(aq)$ step 2 $Fe^{3+}(aq) + 2I^{-}(aq) \longrightarrow Fe^{2+}(aq) + I_2(aq)$ overall $S_2O_8^{2-}(aq) + 2I^{-}(aq) \longrightarrow 2SO_4^{2-}(aq) + I_2(aq)$

Example 3 Autocatalysis by Mn²⁺ (Autocatalysis - where a product catalyses the reaction)

- the titration is carried out at c. 60°C as the reaction is slow at room temperature
 - once some Mn²⁺ is formed, the reaction is much quicker

step 1 $MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 4Mn^{2+}_{(aq)} \longrightarrow 5Mn^{3+}_{(aq)} + 4H_2O_{(l)}$ step 2 $2Mn^{3+}_{(aq)} + C_2O_4^{2-}(aq) \longrightarrow 2Mn^{2+}(aq) + 2CO_2(g)$ overall $2MnO_{4^{-}(aq)} + 5C_2O_4^{2-}(aq) + 16H^{+}_{(aq)} \longrightarrow 2Mn^{2+}(aq) + 5CO_2(g) + 8H_2O_{(l)}$

Q.7 In which industrial processes are the following catalysts used ?

Fe Ni

Pt/Rh

Q.8 Give details of reactions where the following laboratory catalysts are used ? MnO₂

Си

10 -

AQA

Reactions of the first row transition elements An introduction

The examples aim to show typical properties of transition metals and their compounds.

- Variable oxidation states
- Formation of complex ions
- The importance of variable oxidation state in catalysis
- Definitions of Lewis Acids and Bases

One typical properties of transition elements is their ability to **form complex ions**. Complex ions consist of a **central metal ion surrounded by** co-ordinated ions or molecules known as **ligands**.

Ligand substitution can lead to changes in ... • colour

- co-ordination number
- shape
- stability to oxidation or reduction

Reactions When investigating the reactions of selected transition metal ions, look for...

- substitution reactions of complex ions
- variation in oxidation state of transition metals
- the effect of ligands on co-ordination number and shape
- the increased acidity of M³⁺ over M²⁺ due to the increased charge density
- any difference in reactivity of M^{3+} and M^{2+} ions in reactions with OH^{-} and NH_{3}
- the reason why M³⁺ ions don't form carbonates
- amphoteric character in some metal hydroxides e.g. Al³⁺ and Cr³⁺
- the effect a ligand has on the stability of an oxidation state

Amphoteric

character Metal ions of 3+ charge have a high charge density and their hydroxides can dissolve in both acid and alkali.